A Review of Medicinal Properties of some Asteraceae Family Plants on Immune System

Mojtaba Jafarinia 1, Morteza Jafarinia 2
1. Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2. Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract
Introduction: Traditional medicinal plants have gained increasing popularity in the last decades due to the natural origin, low price and fewer side effects. Herbal products are complex mixture of organic chemicals that may come from raw or processed part of plants. Studies have shown that lots of drugs have herbal bases. Over time, the effect of herbal medicines on the immune system has been paid lots of attention. Asteraceae or Compositae is an exceedingly large, annual and widespread family of flowering plants. They produce secondary metabolites, such as flavonoids and terpenoids which have lots of effect on our body. Many of Asteraceae family are plants which have been used in traditional medicine. Many studies have shown the effect of Asteraceae family plants or their extract on immune-mediated diseases, especially their anti-inflammatory effect.

Methods: In this article, we reviewed the medicinal properties of five genuses of Asteraceae family plants which influence the immune system.

Keywords: Medicinal Properties, Asteraceae Family, Immune System

Introduction
Herbal medicines contain a range of pharmacologically active components and these ingredients may have therapeutic effects (1). Traditional herbal medicines have been widely used for thousands of years, because of their natural origin and fewer side effects (2). Written records mention that the use of herbal medicines dates back to more than 5000 years (3). Studies have shown that lots of drugs have herbal basis, such as morphine (from the opium poppy), aspirin (willow bark), quinine (from cinchona bark) and digitoxin (from foxglove) (4). In the developing countries, 75-80% of the world population uses herbal medicines for primary health care and the main reason is the general belief that herbal drugs are cheap, without side effects and locally available. In the developed countries, such as the United States of America, it is estimated that up to 25% of the total drugs are herbal drugs (5). Different studies have shown the effect of medicinal herbs on immune and non-immune diseases, such as reproductive system disorders (6), depression and anxiety disorders (7), Alzheimers disease (8) and diabetes (9). Asteraceae or Compositae is an exceedingly large and widespread family of flowering plants with more than 23,600 currently accepted species, spreading across 1,620 genera and 13 subfamilies (10). Most members of Asteraceae are annual or perennial herbs, but a significant number are also shrubs, vines, or trees. Many of them are plants which have been used in traditional medicine to cure microbial infections. These plants produce secondary metabolites such as flavonoids and terpenoids. The pharmacological effects of flavonoids on immune system have been studied in many studies (6, 7). The immune system is made up of a network of cells, tissues, and organs that work together to protect the body. One of the important cells
involved are white blood cells, also called leukocytes, which come in two basic types that combine to seek out and destroy disease-causing organisms or substances by producing cytokines or cell to cell contact. The leukocytes circulate through the body between the organs and nodes via lymphatic vessels and blood vessels. In this way, the immune system works in a coordinated manner to monitor the body for germs or substances that might cause problems (11, 12). Today's, the effect of medicinal plants on immune system is of great interest and has been reported in many studies (13, 14). In this regard, we decided to review the medicinal properties of 5 genuses of Asteraceae (Compositae) family plants, including Artichoke (Cynarascolymus L.), Chicory (Chichoriumintybus L.), Calendula (Calendula officinalis L.), Burdock (Arctium lappa L.) and Feverfew (Tanacetum parthenium L.) which influence the immune system.

Artichoke (Cynarascolymus L.)

Cynarascolymus is a perennial thistle originating in southern Europe around the Mediterranean, Greece and Egypt (northern Africa and the Canary Islands). This plant is one of the oldest medicinal plants in the world (15). It is 1.5–2 m tall, with arching, deeply lobed, silvery glaucous-green leaves which are 50–80 cm long. The flowers develop in a large head from an edible bud about 8–15 cm diameter with numerous triangular scales; the individual florets are purple. The edible portion of the buds consists primarily of the fleshy lower portions of the involucral bracts and the base, known as the "heart"; the mass of inedible immature florets in the center of the bud are called the "choke." Different studies have shown that Cynarascolymus is rich in flavonoids, vitamin C and other compounds especially caffeoylquinic derivatives (cynarin and chlorogenic acid) (16, 17). Many studies have reported that Cynarascolymus has a good antitumor, anti-inflammatory, antioxidant effect on animal models and stimulate the immune system (18-20). The hypoglycemic effect of Cynarascolymushave also shown in the study of Fantini et al. (20). Osama et al. evaluated the immunostimulant effects of Cynarascolymus against carbon tetrachloride (CCl4) induced immunotoxicity in rats, and in their results showed that treatment with Cynarascolymus significantly increased total leukocyte and lymphocyte counts as well as phagocyte activities and Interleukin (IL)-12 while tumor necrosis factor (TNF)-α and IL-6 were decreased (15). This data confirm the anti-inflammatory effect of Cynarascolymus.

Chichory (Chichoriumintybus L.)

Chichoriumintybus is biennial herb, glandular, erect with rosette leaves and a tuberous taproot which is widely distributed in Europe and Asia. Its commonly known as chicory in English and kasani in Sanskrit (21). Green leafy part of chicory is often used in salads or cooking; the roots of chicory are commonly used for manufacturing coffee substitutes. Similar to other Asteraceae family plants, chicory is one of the important medicinal plants. All parts of this plant have medicinal importance due to the presence of some medicinally important compounds such as, alkaloids, coumarins, vitamins, inulin, flavonoids, saponins, unsaturated sterols and tannins (22-24). Chicory is mainly used for treatment of menstrual disorders, liver disorders, fever and inflammatory swellings (25, 26). It has also been used for treatment of other immune and non-immune mediated disease, such as jaundice, gout, gallstones, appetite loss and rheumatism (27, 28). Different studies have reported various medicinal properties for different parts of Chichoriumintybus. For instance, its roots are rich in dietary fibers which have been reported to possess anticarcinogenic and diuretic activities (29). It also contains high amount of insulin which have biofidogenic property (30). Whole plants have also been shown to have antioxidant (28), antibacterial (31), anti-diabetic (32), hepatoprotective (33) and cardioprotective properties (34). Anti-inflammatory effect of chicory have been
reported in some studies (26, 27). Rizvi et al. have shown that chicory roots diminished the serum levels of inflammatory cytokines, TNF-\(\alpha\), IL-6 and IL-1 (26). The effect of Cichorium intybus also has been investigated on dendritic cells (DCs). DCs are antigen-presenting cells of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. Karimi et al. have shown that treatment of DCs with extract of Cichorium intybus increases the production IL-12 by these cells with no change in IL-10 release. They also demonstrated that higher concentrations of Cichorium intybus inhibit proliferation of allogenic T cells and lower concentrations change the level of cytokines such that IL-4 decreases and interferon (IFN)-\(\gamma\) increases (35). These results may suggest that Cichorium intybus a candidate for treatment of immune-mediated disorders.

Calendula (Calendula officinalis L.)

Calendula officinalis, commonly known marigold and calendula, is an annual plant which thrives in all types of soil and can be found in Eastern and Western Asia, the United States and Europe. Its branching stems can grow to a height of 30 to 60 cm (36). Calendula officinalis contains active chemicals such as astocophrrols, calendulin, bitters, resin, flavonoids, sterols, volatile oil, triterpenoidsaponins, triterpene alcohols and flavonol glycosides (37). Regarding medicinal properties, studies have shown that calendula may relieve inflammation and limit the infiltration of white blood cells into tissues. Wound healing properties is another probable effect of calendula (38). Calendula officinalis is widely used in traditional medicine as an anti-inflammatory agent, anti-bacterial, anti-fungal, anti-viral and anti-oxidant activities (39). In different parts of the world, calendula has been used in various diseases such as, pharyngitis, conjunctivitis, aphthous stomatitis, hemorrhoids, jaundice, stomach ulcer and liver complaints. Safdar et al. have demonstrated antimicrobial activity of Ethanolic extract of calendula against Escherichia coli (E. coli), Vibrio cholera and Candida albikans (36). Marina et al. have demonstrated that Calendula officinalis extract induced gradually increasing specific humoral activity (40). Preethi et al. have shown that extract of Calendula officinalis inhibited increased level of proinflammatory cytokines TNF-\(\alpha\), IL-6, IL-1, IFN-\(\gamma\), acute phase protein and c-reactive protein (CRP) in mice produced by LPS injections (39).

Burdock (Arctium lappa L.)

Arctium lappa, commonly known as burdock, is a big-leaved plant related to sunflowers, dandelions, lettuce, and many, many others. It is found mostly throughout Europe (41). Arctium lappahas been extensively studied due to its health promoting and pharmacological properties. Major active ingredients have been isolated from Arctium lappainclude of inulin, caffeic acid, tannins, arctigenin, arctin, lappaoi, chlorogenic acid, glucopyranoside and diarctigenin (42). Tumor suppressing effect of bioactive molecules isolated from Arctium lappa has been examined in different studies. Arctigenin is the most important bioactive molecules for this property (43, 44). Anti-diabetic effects of Arctium lappa also have been shown in the study of Ahangarpour et al. that administration of different doses of the Arctium lappas extract reduced the level of alkaline phosphatase, glucose, very low density-lipoprotein (VLDL) and triglycerides while both leptin and high density-lipoprotein increased in the diabetic mice. They also have shown that Arctium lappas extract treated enhanced level of insulin (45). Yang et al. have demonstrated that oleamide, a bioactive molecule isolated from Arctium lappa reduced TNF-\(\alpha\) and IL-4 production (46). Chlorogenic acid which is isolated from root extract of Arctium lappahas been shown significant anti-microbial efficacy Klebsiellapneumonia, Candida albicans and E.coli(47). Maghsoumi-Norouzabad et al. have shown that Arctium lappa root tea reduced...
serum level of IL-6 and high sensitivity CRP, while serum levels of total antioxidant capacity (TAC) and superoxide dismutase activities were found to be enhanced (41). It suggests that Arctium lappa root tea may be effective inflammatory diseases such as osteoarthritis. Gastro-protective activity and regulation of blood pressure are other diseases which Arctium lappa may have positive effects (48, 49). Finally, Wu et al. have demonstrated that arctigenin reduced the expression levels of IL-17F, IL-17A, IL-21, IL-22, RORγT and IL-23R in CD4+ T cells and also repressed the number and percentage of IL-17+CD4+ T cells in ulcerative colitis (50). This data suggests that arctigenin inhibits T helper17 (Th17) differentiation which plays a crucial role in pathogenesis ulcerative colitis.

Feverfew (Tanacetum parthenium L.)

Tanacetum parthenium is a daisy-like perennial plant found commonly in Europe and Asia. It is a short, aromatic and bushy perennial that have 0.3-1 meter height. Its leaves are yellow-green and usually less than 8cm in length. The odor of this plant is strong and bitter (51). The most important biologically active ingredients of Tanacetum parthenium consist of sesquiterpenelactones, flavonoids, volatiles oils and coumarinisofraxidin (51, 52). Different studies have shown various medicinal effects for Tanacetum parthenium, such as treat dermatitis, asthma, fever, earache, headache, spasms, psoriasis, arthritis, inflammatory conditions, labor, menstrual disorders, potential miscarriage, stomachache, swelling, toothache, vertigo and worms (51, 53, 54). Studies have demonstrated that Tanacetum parthenium exerted their anti-inflammatory effect by inhibiting the synthesis of prostaglandins or by cytotoxic effect on peripheral blood mononuclear cells. Lipophilic compounds of Tanacetum parthenium may reduce human neutrophil oxidative burst activity (51). Chloroform extract of Tanacetum parthenium inhibited histamine release from rat peritoneal mast cells. This data have suggested anti-allergic effect for Tanacetum parthenium. Parthenolide is one of the components of Tanacetum parthenium which have shown anti-microbial and anti-cancer property against several human cancer cell lines (51). Jannesaret al. have also demonstrated that flavonoid extract of Tanacetum parthenium pollen grains has significant immunomodulatory activity (55).

Conclusion

The Asteraceae is the largest and most cosmopolitan family of flowering plants. Plants of this family were widely used in the past and are still used as medical herbs. Asteraceae family plants contain different components which flavonoids are the most important ingredient. Studies suggest that plant flavonoids may be health promoting, disease preventing dietary compounds. Using of Asteraceae family plants can influence the immune system. The most important effect which is observed in all Asteraceae family plants is their anti-inflammatory effect. Plants of this family reduce inflammatory cytokines such as TNF-α, IL-1, IL-6 and other acute phase proteins like CRP. It seems that Asteraceae family plants reviewed in this article are good candidates for studying in clinical trials of inflammatory diseases in which modulating the immune system is needed.

Ethical issues

Not applicable.

Authors’ contribution

All authors equally contributed to the writing and revision of this paper.

Acknowledgment

The present authors express their thanks and gratitude to the vice-chancellor of Research and Technology of Marvdasht branch, Islamic Azad University.
References

22. Molan A, Duncan A, Barry T, McNabb W, editors. Effects of condensed tannins

