Determination of the prevalence of metallo-β-lactamases producing Pseudomonas aeruginosa strains from clinical samples by imipenem-EDTA combination disk method in Mottahari and Emam Khomaini hospitals of Urmia

Document Type : Original Article


1 MSc, Department of Microbiology, Urmia Branch, Islamic Azad University, Urmia, Iran

2 Assistant Professor, Department of Microbiology, Urmia Branch, Islamic Azad University, Urmia, Iran


Introduction: Pseudomonas aeruginosa is one of the major bacterial nosocomial infections. Metallo-β-lactamases (MBLs) are one of the most important agents for resistance against carbapenem. Based on the role of carbapenem for Pseudomonas infection treatment, in this research clinical strains of MBL producing bacteria were studied.
Methods: Fifty Pseudomonas aeruginosa isolated from clinical samples were collected from patients that referred to the Emam Khomeini and Mottahari hospitals of Urmia. After bacterial confirmation with standard bacteriologic tests, bacterial sensitivity was assayed against ten common antibiotics by the method of disk diffusion test. Then imipenem-resistant strains were candidate for the identification of MBL production by imipenem-EDTA (Ethylenediamine
tetra acetic acid ) combination disk test.
Results: Of all 50 isolated Pseudomonas aeruginosa, 36 isolates (72%) were resistant against imipenem. Obtained results from imipenem-EDTA combined disk test showed that 32.36 isolates (88.9%) had MBL.
Conclusion: Although Pseudomonas aeruginosa producing MBL are resistant against all of β-lactams antibiotics, but determining the strains that produce MBL can help physicians to select the suitable antibiotic for treatment and improve the prognosis of the infection due to this bacterium.


1. Manoharan A, Chatterjee S, Mathai D. Detection and characterization of metallo-β-lactamases producing Pseudomonas aeruginosa. Indian J Med Microbiol 2010; 28(3): 241-4.
2. Bahar MA, Jamali S, Samadikuchaksaraei A. Imipenem-resistant Pseudomonas aeruginosa strains carry metallo-beta-lactamase gene bla(VIM) in a level I Iranian burn hospital. Burns 2010; 36(6): 826-30.
3. Tredget EE, Shankowsky HA, Rennie R, Burrell RE, Logsetty S. Pseudomonas infections in the thermally injured patient. Burns 2004; 30(1): 3-26.
4. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006; 50(1): 43-8.
5. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 2006; 43(suppl 2): S49-56.
6. Bush K, Jacoby GA. Updated functional classification of β- Lactamases. Antimicrob Agents Chemother 2010; 54(3): 969-76.
7. Drawz SM, Bonomo RA. Three decades of β- Lactamase inhibitors. Clin Microbio Rev 2010; 23(1): 160-201.
8. Weber J, McManus A. Infection control in burn patients. Burns 2004; 30(8): A16–24.
9. Shahcheraghi F, Nikbin VS, Feizabadi MM. Identification and genetic characterization of metallo-beta-lactamase-producing strains of Pseudomonas aeruginosa in Tehran, Iran. New Microbiol 2010; 33(3): 243-8.
10. Bogiel T, Deptula A, Gospodarek E. Evaluation of different methods for detection of metallo-beta-lactamases in Pseudomonas aeruginosa clinical isolates. Pol J Microbiol 2010; 59(1): 45-8.
11. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott’s Diagnostic Microbiology. 12th ed. London: Mosby; 2007. p. 340-50.
12. Sadeghi A, Rahimi B, Shojapour M. Molecular detection of metallo-β-lactamase genes blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2 and blaSPM-1 in Pseudomonas aeruginosa isolated from hospitalized patients in Markazi province by Duplex-PCR . Afr J Microbiol Res 2012; 6(12): 2965-9.
13. Clinical and Laboratory Standarad Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 18th informational supplement. Wayne, PA: CLSI; 2008.
14. Pitout JD, Gregson DB, Poirel L, Mcclure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo- β-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43(7): 3129-35.
15. Luzzaro F, Endimiani A, Docquier JD, Mugnaioli C, Bonsignori M, Amicosante G, et al. Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2004; 48(2): 131-5.
16. Bigot Y. Mobile Genetic Elements: Protocols and Genomic Applications. 6th ed. London: Humana Press; 2012.
17. Shakibaie MR, Shahcheraghi F, Hashemi A, Adeli N S. Detection of TEM, SHV and PER type extended-spectrum β-lactamase genes among clinical strains of Pseudomonas aeruginosa isolated from burnt patients at Shafa hospital, Kerman, Iran. Iranian Journal of Basic Medical 2008; 11(2): 49-54.
18. Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosa strains produsing metallo-β-lactamases from infection in burned patients and identification of blaIMP and blaVIM genes by PCR. Iran J Med Microbiol 2007; 1(1): 31-3.
19. Nasrin T, Shariful Alam Jilani MD, Barai L, Ashraful Haq J. Metallo-β-lactamase producing Pseudomonas species in a tertiary care hospital of Dhaka city.Bangladesh J Med Microbiol 2010; 4(1): 43-5.
20. Jácome PR, Alves LR, Cabral AB, Lopes AC, Maciel MA. Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. Rev Soc Bras Med Trop 2012; 45(6): 707-12.